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Abstract

A thermomechanical boundary value problem and constitutive model are presented for a shape memory alloy

(SMA) wire under uniaxial loading. The intent is to develop a one-dimensional continuum model of an SMA element

that includes all the relevant thermomechanical couplings and is suitable for inclusion in finite element analyses.

Thermodynamic relations are derived from phenomenological considerations consistent with recent experimental ob-

servations and are calibrated to a typical commercially available NiTi wire material. The model includes both tem-

perature-induced and stress-induced transformations that are necessary to exhibit the shape memory effect and

pseudoelastic behaviors. The model accommodates possible unstable mechanical behavior during stress-induced

transformations by allowing softening transformation paths and including strain gradient effects. This should provide a

tool to study propagating transformation fronts and localized latent heat transfer with the surroundings and a variety

of interesting future structural applications, such as composites with embedded SMA elements. � 2002 Elsevier Science

Ltd. All rights reserved.
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1. Introduction

Shape memory alloys (SMAs), such as NiTi-based alloys, exhibit two remarkable properties, the shape
memory effect and pseudoelasticity. The shape memory effect is the material’s ability to recover large
mechanically-induced strains (up to 8%) by moderate increases in temperature (say 20 �C). Pseudoelasticity
refers to the ability of the material in a somewhat higher temperature regime to accommodate strains of this
magnitude during loading and then recover upon unloading (via a hysteresis loop). The underlying
mechanism is a reversible martensitic transformation between solid-state phases, often occurring near room
temperature. The transformation can be induced by changes in temperature or by changes in stress due to
the strong thermomechanical coupling in the material behavior. The material also has very non-linear
mechanical behavior, high internal damping, and high yield stresses. These properties make it an attractive
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choice for innovative structural applications (see, for example, Duerig et al., 1990; Otsuka and Wayman,
1998).

NiTi’s remarkable behavior arises from the interplay of a high temperature phase (austenite), having a
cubic atomic lattice structure, and a low temperature phase (martensite), having a monoclinic structure
(Otsuka et al., 1971). Fig. 1 shows a differential scanning calorimetry thermogram of a typical commercially
available NiTi SMA. The heat input is measured as the temperature of a stress-free sample is changed at a
constant rate. The area within the measured peaks and valleys represent the latent heat of transformation
between solid-state phases. Due to its low degree of symmetry, the martensite phase exists either as a
randomly twinned structure (low temperature, low stress state) or a stress-induced detwinned structure that
can accommodate relatively large, reversible strains. Fig. 2 shows the thermomechanical response of a wire

Nomenclature

Variable Description
x, X current and reference axial positions
t time
s characteristic time
l, L current and reference wire lengths
d, D current and reference wire diameters
a, A current and reference cross-section areas
p, P current and reference cross-section perimeters
q, q0 current and reference mass densities
J determinate of deformation gradient
u axial displacement
k axial stretch ratio
e nominal axial strain
r, R true and nominal axial stresses
t, T true and nominal tractions
N axial force
f, F current and reference axial distributed forces
e specific internal energy
/ specific Helmholtz free energy
s specific entropy
c specific heat
ni mass fraction of phase i
li specific chemical force of phase i
h absolute wire temperature
ha ambient (bath) temperature
qx, QX current and reference axial heat fluxes
qr, QR current and reference radial heat fluxes
k, K current and reference thermal conductivities
h, H current and reference film coefficients
E elastic modulus
b stress–free transformation strain
a thermal expansion coefficient
Bi Biot number
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specimen of the alloy used in Fig. 1 that was tested in a temperature-controlled water bath. The specimen is
first subjected to a displacement-controlled load/unload cycle at a relatively low temperature ( to in the
figure), leaving a 5% apparent permanent strain. The material starts in a twinned martensite (M) state and
becomes detwinned upon loading. The specimen is then subjected to a temperature increase while holding
the load at a small positive value ( to ). The shape memory effect is seen as the strain is recovered

Fig. 2. Thermomechanical behavior of NiTi wire: shape memory effect ( to ), pseudoelastic loop ( to ). [Data taken on wire

supplied by Memry Corp. used in Shaw and Kyriakides (1995). Material has first been quenched in liquid nitrogen to minimize the

appearance of the R-phase.]

Fig. 1. Differential Scanning Calorimetry of NiTi wire. [Data taken on wire supplied by Memry Corp. used in Shaw and Kyriakides

(1995).]
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between points and when the material transforms to austenite (A). The temperature is then held at a
relatively high value and the specimen is again subjected to a load/unload cycle under displacement control
( to ). The material undergoes an increase in strain from about 1% to 7% at constant load ( to )
during stretching which is reversed at a lower constant load ( to ) during subsequent unloading
(pseudoelastic behavior). In this case the material transforms from austenite to detwinned martensite
during loading and then back to austenite during unloading.

The unique properties of equiatomic NiTi were discovered four decades ago (Buehler et al., 1963), and
the materials science literature is rich on the subject of the microlevel mechanisms responsible for its un-
usual behavior. The development of constitutive models appropriate for design studies has been hampered
by the complexity of the material behavior and the somewhat limited experimental basis for many years.
Bridging the gap between microscopic structure and a macroscopic constitutive model is a complex task
and constitutes an area of intensive research (see, for example, Ball and James, 1987; Batthacharya and
Kohn, 1996; Siredey et al., 1999). The last decade has seen a variety of constitutive modeling efforts (see, for
example, Tanaka et al., 1986; Brinson, 1993; Abeyaratne and Knowles, 1993; Truskinovsky, 1993; Sun and
Hwang, 1993; Levitas, 1994; Boyd and Lagoudas, 1994; Patoor et al., 1995; Siredey et al., 1999) including
purely phenomenological approaches, plasticity analogues, thermodynamically based continuum models,
and detailed micromechanical models. In addition, some notable experimental findings involving temper-
ature and rate sensitivities, unstable behavior, propagating phase transitions, and tension-compression
asymmetry effects (see Leo et al., 1993; Shaw and Kyriakides, 1995; Sittner et al., 1995; Gall et al., 1999;
Zhang et al., 2000), have provided a better understanding of the material behavior.

Propagating phase transformation phenomena that have been observed in uniaxial pseudoelastic NiTi
are particularly interesting features (see, for example, Shaw and Kyriakides, 1997; Sun et al., 2000). Atomic
lattice-level instabilities can, in some cases, percolate all the way up to the macroscale, causing mechanical
instability, sudden dynamic nucleation events, and then transformation by propagating phase fronts (see
Elliott et al., 2001, for a first attempt at lattice-scale modeling). These phenomena cause complex inter-
actions with the surroundings and sometimes surprising rate effects in the material behavior due to latent
heat exchanges with the surroundings. Furthermore, similar L€uuders-like behavior has been observed during
the martensite detwinning response (Liu et al., 1998) of some NiTi alloys (although not the one shown in
Fig. 2).

Many applications use SMAs in wire form, since it is generally the least expensive and most readily
available form. The distinctly non-uniform strain and temperature fields that occur have important im-
plications on the performance, reliability, and controllability of practical devices. The 1-D thermodynamic
framework of Abeyaratne and Knowles (1993) and Knowles (1999) acknowledged such unstable behavior
by treating propagating phase boundaries as traveling field discontinuities with appropriate jump condi-
tions. The related work of Abeyaratne et al. (1996), Truskinovsky and Zanzotto (1996), Vainchtein (1999),
and Ngan and Truskinovsky (1999) provided analyses of the origins of the pseudoelastic hysteresis arising
from the fine microstructural scale. While most current models that treat phase boundary motion do not
have any length scale associated with nucleation events or propagating fronts, Sun and Zhong (2000)
provided an interesting analysis of the origins of the length scale of nucleation events in an axisymmetric
wire arising from the radial strain mismatch between phases.

An alternate approach was demonstrated in Shaw and Kyriakides (1998) for isothermal behavior, and
Shaw (2000) and Iadicola and Shaw (in preparation) for coupled thermomechanical behavior. These finite
element simulations captured the evolution of propagating transformation fronts and the associated non-
uniform temperature and mechanical fields without treating phase fronts as discontinuous quantities. The
approach modeled the macroscopic deformation fields during unstable stress-induced transformation in
uniaxially loaded thin polycrystalline NiTi specimens with 3-D continuum-level plasticity with a non-
monotonic flow rule. The number and speed of propagating fronts was not specified a priori; rather, they
were determined naturally by the coupled solution of mechanical equilibrium and the heat equation. The
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boundary value problem, however, was not always elliptic in its spatial variables and care was needed
to avoid potential pathological mesh sensitivity. Additionally, the plasticity model applicability was limited
to irreversible behavior, capturing the stress-induced transformations during loading only (A !
detwinned M), and the finite element analyses were computationally intensive due to the 3-D approach.

In this paper, a thermomechanical boundary value problem is defined and a new SMA model for a
uniaxially loaded, thin SMA wire is presented. The objective is to develop a reduced-dimensional model
suitable for finite element implementation. The constitutive model includes reversible stress-induced
transformation and temperature-induced transformation necessary to exhibit both the shape memory effect
and pseudoelasticity. It is intended to represent thermoelastic behavior within a restricted temperature
range centered around the martensitic transformation temperatures (such as the 200 �C range of Fig. 1).
The behavior at very high temperatures for which diffusional effects occur, such as annealing, are outside
the scope intended here. The model is also intended to be used for stresses up to intermediate values (such
as the range shown in Fig. 2). Plasticity effects, which occur at higher stresses, that degrade the shape
memory recovery behavior (for example, pseudoelastic loops at high temperatures that do not close) and
certain cyclic phenomena involving transformation softening (see Shaw, 1997) are outside the scope of the
current work.

Special attention is paid to regimes where transformation occurs in a mechanically unstable manner. The
approach is akin to that of Abeyaratne and Knowles (1993), involving the derivation of a free energy
function and phase transformation kinetic law, but with gradient effects (see Truskinovsky, 1993). The
approach differs, however, in the form of the chosen free energy and the choice of internal field variables (to
capture both stress-induced and temperature-induced transformations). Strain gradient effects in the free
energy eliminate the possibility of discontinuous strain fields. In this way nucleation events at the mac-
roscale, i.e. strain localization, arise naturally from the solution of the boundary value problem. The model
sets the length scale for nucleation and propagating fronts based on a strain gradient energy (an indirect
measure of the compatibility effects modeled in Sun and Zhong, 2000). The strength of the gradient term
can be calibrated to give any length scale one wishes, either based on experimental observation or di-
mensional analysis. The model is being implemented in a finite element computer program and solution of
structural and design problems using the model will be the subject of forthcoming publications.

The coupled thermomechanical boundary value problem of interest is developed in Section 2, and
constitutive restrictions arising from the entropy inequality are given in Section 3. In Section 4, a specific
Helmholtz free energy and kinetic relations are developed. The axial pointwise constitutive behavior of the
model and predicted calorimetry results, calibrated to some NiTi experiments, are then demonstrated in
Section 5. Lastly, Section 6 provides two finite element simulations in a simplified setting in order to
demonstrate the ability to model propagating strain fields.

2. Conservation laws

In this section a derivation of the governing field equations is provided using the balance laws of
thermodynamics. While the theory is now well established (see, for example, Truskinovsky, 1993; Ngan and
Truskinovsky, 1999), the application of fundamental balance laws in this context (thermomechanical
coupling and finite deformation with gradient effects for a fine grained, polycrystalline, SMA wire un-
dergoing both stress-induced and temperature-induced transformations) is included here for completeness
and clarity of presentation.

The boundary value problem consists of an axisymmetric SMA wire loaded uniaxially and embedded in
a medium, either fluid or solid. If the medium is a fluid it acts as a thermal bath with a (possibly) time
varying ambient temperature, haðtÞ. If the medium is a solid it transmits heat and mechanical loads to the
SMA wire. The initial geometry of the wire is described by its reference length, L, and cross-sectional area,
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A (see Fig. 3a). To justify the 1-D context the area of the wire, AðX Þ, is assumed to be slowly varying. The
relevant fields, displacement uðX ; tÞ, absolute temperature hðX ; tÞ, and internal variables niðX ; tÞ, are
functions of one spatial dimension, X (reference position), and time, t.

2.1. Conservation of mass

Conservation of mass between the reference configuration and current configuration is

q0AdX ¼ qadx; ð1Þ
where x is the material coordinate in the current configuration (see Fig. 3b), and a is the current cross-
sectional area. Throughout this paper, uppercase and lowercase versions of the same variable refer to
reference and current configuration quantities, respectively. Using the axial stretch ratio, k ¼ dx=dX , and
the ratio of the reference and current mass densities, J � q0=q, we get

JA ¼ ak: ð2Þ
Furthermore, martensitic transformations can often be considered nearly isochoric ðq0 ¼ qÞ, so the fol-
lowing is assumed from here on.

J ¼ 1; A ¼ ak: ð3Þ

2.2. Conservation of linear momentum

Conservation of linear momentum in the current configuration can be expressed as

d

dt

Z x2

x1

_uuqadx ¼ ½N �x2x1 þ
Z x2

x1

f dx: ð4Þ

where N is the tensile force in the wire, _uu ¼ ouðX ; tÞ=ot is the material velocity, and the notation ½N �x2x1
represents Nðx2; tÞ 	 Nðx1; tÞ. Using mass conservation, the divergence theorem and the arbitrariness of the

Fig. 3. (a) Reference configuration, (b) current configuration showing propagating neck (transformation front), (c) free body diagram

of infinitesimal section.
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interval ½x1; x2� (or the free body diagram, Fig. 3c), the equation of motion of a 1-D structural element
subjected to an axial distributed load, f (force/current length), is

N;x þ f ¼ qa€uu; ð5Þ

where N;x refers to oN=ox. It is equivalently expressed in the reference configuration, using Eqs. (1) and (2),
as

N 0 þ F ¼ q0A€uu; ð6Þ

where N 0 refers to oN=oX , and F � f k is the distributed force per unit reference length.
The application of the divergence theorem is justified provided the field quantities are sufficiently smooth

(otherwise, jump conditions must be specified across surfaces which exhibit discontinuities as in Abeyaratne
and Knowles, 1993). One of the objectives of the current formulation is to ensure all field quantities remain
sufficiently smooth. Anticipating the possibility of non-monotonic stress–strain behavior with an inter-
mediate softening branch, multiple strain states are possible for a given stress value. In a 1-D framework
this admits the possibility of discontinuous strain fields under equilibrium conditions. Instead, we seek to
ensure that unstable mechanical behavior gives rise to localized, but smooth, deformation of the type
shown in Fig. 3b. A non-local constitutive relation for stress is needed, which necessarily introduces a
length scale into the constitutive model. In this case, the length scale of interest is the wire diameter, since
the axial extent of a local propagating neck (or transformation front) is expected to be of this size. We
presume that the wire is polycrystalline with a sufficient number of grains such that compatibility is the
dominant consideration in regions with strong strain gradients.

A strain gradient approach, therefore, is used to account for off-axis effects in a 1-D framework (similar
justification and approach to that of Coleman (1983) for drawing of polymeric fibers). It is well known that
such a gradient approach avoids the singularity in the equilibrium equation (loss of ellipticity in the
multidimensional case) as the local tangent modulus changes sign. It also avoids the possibility of dis-
continuous strain fields that could lead to pathological mesh dependence in a finite element implementa-
tion. For a review of strain gradient theories see the article by Fleck and Hutchinson (1996). The approach
first proposed by Mindlin (1965) and generalized to finite deformation kinematics as in Leroy and Molinari
(1993), is adopted. Specializing to one-dimension, the generalized principle of virtual work can be written asZ x2

x1

r
1
d~ee

�
þ r

2
d~ee;x
�
adx ¼

Z x2

x1

ðf 	 qa€uuÞdudxþ t
1
adu

� �x2
x1

þ t
2
adu;x

� �x2
x1

; ð7Þ

where r
1
and r

2
are the Cauchy-like (or true) axial stresses conjugate to the virtual strain d~ee and virtual strain

gradient d~ee;x, respectively, t
1
and t

2
are the end tractions conjugate to the virtual displacement du and virtual

displacement gradient du;x, respectively. Alternatively, the left hand side of Eq. (7) can be transformed to
the reference configuration, thereby inducing the following equivalent statement,Z X2

X1

R
1

dk

�
þ R

2

dk0
�
AdX ¼

Z X2

X1

ðF 	 q0A€uuÞdudX þ T
1

Adu
� �X2

X1

þ T
2

Adu0
� �X2

X1

; ð8Þ

where R
1

and R
2

are the nominal-like (first Piola–Kirchhoff) stresses conjugate to the stretch, and its gradient,

respectively, and T
1

and T
2

are the referential end tractions. Integrating the left hand side of Eq. (8) by parts
gives Z X2

X1

"
	 AR

1
� �0

þ AR
2

� �00#
dudX þ AR

1

 "
	 AR

2
� �0!

du

#X2
X1

þ AR
2

du0
� �X2

X1

: ð9Þ

Combining Eqs. (8) and (9) an invoking the arbitrariness of du produces the same governing equation as
(6), but with the axial force now interpreted as
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N ¼ R
1

A	 R
2

A
� �0

ð10Þ

and boundary condition as

T
1

A ¼ R
1

A	 R
2

A
� �0

and T
2

¼ R
2

: ð11Þ

At the ends X ¼ 0, L the gradient traction, T
2

, is often set to zero, thereby providing the necessary higher
order boundary condition. Note also that deriving the governing differential equation in the current con-
figuration provides relations between Cauchy and nominal-like stresses,

R
1

¼ k	1r
1
;

R
2

¼ k	2r
2
:

ð12Þ

2.3. Conservation of energy

The heat equation for the wire is derived from the first law of thermodynamics (or energy conversation).
The rate of increase of internal energy and kinetic energy is equal to the rate at which thermal and me-
chanical energy is supplied to the wire. This can be expressed in the current configuration as

d

dt

Z x2

x1

eqadx
�

þ
Z x2

x1

1

2
_uu2qadx

�
¼ 	½qxa�x2x1 	

Z x2

x1

qrpdxþ t
1
a _uu

� �x2
x1

þ t
2
a _uu;x

� �x2
x1

þ
Z x2

x1

f _uudx; ð13Þ

where e is the specific internal energy, qx is the axial heat flux, qr is the radial heat flux, and p is the current
circumference (perimeter) of the wire. Using the relations between reference and current heat flux quantities

QXA ¼ qxa or QX ¼ qx=k; ð14Þ

QRP dX ¼ qrpdx or QR ¼ qr
ffiffiffi
k
p

; ð15Þ
allows energy conservation to be written in the reference configuration as

d

dt

Z X2

X1

eq0AdX
�

þ
Z X2

X1

1

2
_uu2q0AdX

�
¼ 	½QXA�X2X1 	

Z X2

X1

QRP dX þ T
1

A _uu
� �X2

X1

þ T
2

A _uu0
� �X2

X1

þ
Z X2

X1

F _uudX : ð16Þ

The divergence theorem givesZ X2

X1

ð _eeþ €uu _uuÞq0AdX ¼ 	
Z X2

X1

½ðQXAÞ0 þ QRP �dX þ
Z X2

X1

ðN _uuÞ0
"

þ R
2

A _uu0
� �0

þ F _uu
#
dX : ð17Þ

Using Eqs. (6) and (10) and invoking the arbitrariness of X1 and X2, the heat equation in the reference
configuration is

q0A _ee ¼ 	ðQXAÞ0 	 QRP þ R
1

A _kkþ R
2

A _kk0: ð18Þ
A simple model for the radial heat flux is

QR ¼ 	Hðh	 haÞ; ð19Þ
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whereH is the referential film coefficient, h is the wire temperature, and ha is the ambient temperature. Note
that due to Eqs. (3) and (15) the film coefficient in the current and reference configurations are related by
H ¼ h

ffiffiffi
k
p

. Consistent with the 1-D assumption, the gradient of the temperature across the wire in the radial
direction is assumed to be negligible. This is true if the surrounding medium is much less conductive than
the wire. In particular, the Biot number Bi, the non-dimensional ratio of the radial thermal resistance to the
boundary thermal resistance, should be much less than unity (Incropera and DeWitt, 1996). That is,

Bi � HR=K � 1; ð20Þ
where R is the wire radius. For an air medium the dominant heat transfer mechanism is convection. A
typical NiTi wire in stagnant air with K ¼ 18 W/Km, H ¼ 4 W/Km2, and R ¼ 0:4 mm, has a Biot number
of the order of 10	4; therefore, the radial temperature gradient can reasonably be neglected.

3. Restrictions on constitutive relations

The second law of thermodynamics is satisfied by adopting the approach of Coleman and Noll (1963)
and Coleman and Gurtin (1967), where restrictions are placed on the constitutive relations. The total
change in entropy of the wire and its surroundings must be non-negative,

d

dt

Z x2

x1

sqadxþ qxa
h

h ix2
x1
þ
Z x2

x1

qrp
h

dxP 0; ð21Þ

where s is the specific entropy of the wire. Using the divergence theorem once again we obtainZ x2

x1

_ssqa
�

þ qxa
h

� �
;x
þ qrp

h

�
dxP 0; ð22Þ

which is an integral form of the Clausius–Duhem inequality for arbitrary interval ½x1; x2�. Converting to the
reference configuration, the entropy inequality becomesZ X2

X1

_ssq0A

"
þ QXA

h

� �0
þ QRP

h

#
dX P 0: ð23Þ

Eliminating the divergence of the heat flux by using the heat equation (18) the entropy production rate
becomesZ X2

X1

q0Aðh_ss
"

	 _eeÞ 	 h0

h
QXAþ R

1

A _kkþ R
2

A _kk0
#
dX
h

P 0: ð24Þ

The behavior of the wire is determined from knowledge of the following field quantities: the displace-
ment field uðX ; tÞ, the temperature field hðX ; tÞ, and phase fraction fields n1ðX ; tÞ, n2ðX ; tÞ, and n3ðX ; tÞ as
discussed below. Each of these is a function of axial position X and time t. Since axial position is the only
spatial variable all quantities are interpreted to be average quantities across the cross-section of the wire.

As discussed previously the underlying mechanism for shape memory behavior is a change in crystal
structure from a high symmetry lattice (austenite––often cubic) to a low symmetry lattice (martensite––
monoclinic in the case of NiTi) upon cooling. Martensite has several energetically equivalent variants,
which are simple rotations or reflections of the crystal structure. If little or no macroscopic stress exists
during the transformation from A to M the microstructure will be randomly twinned, resulting in no
change in macroscopic strain. If a sufficient stress, however, is applied the structure will become detwinned,
resulting in the reorientation of some variants into other variants that are preferentially aligned with the
applied stress. The number of martensite variants can be large (24 in the case of NiTi), but only those that
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contribute to axial stretching or shortening are relevant here (see Fig. 4). Therefore, n1 represents the phase
fraction of martensite that contributes to axial stretching (Mþ); n2 represents the phase fraction of mar-
tensite that contributes to axial shortening (M	); and n3 represents the phase fraction of austenite (A).
Equal fractions of n1 and n2 represents a twinned microstructure. These three phase fractions ðn1; n2; n3Þ are
necessary to model the shape memory effect, in which the material transforms from austenite ð0; 0; 1Þ to
twinned martensite ð1

2
; 1
2
; 0Þ upon cooling, then to detwinned martensite ð1; 0; 0Þ upon loading–unloading,

then back to austenite upon heating (see the thermomechanical cycle , , to in Fig. 2).
Accordingly, this is a mixture theory where more than one phase can be present at a given axial position

along the wire. The phase fractions are interpreted as mass fractions (actually they can also be termed
volume fractions in this context since transformations are assumed to be isochoric). They are subject to
mass conservation constraints

n1 þ n2 þ n3 ¼ 1 and ni P 0 for i ¼ 1; 2; 3: ð25Þ

Pictorially, phase fractions are free to wander within the triangular planar region shown in Fig. 5.
Consequently, only two phase fractions are independent, and we choose to use n1 (M

þ fraction) and n2 (M
	

fraction). No other explicit compatibility requirements are enforced between phases at the microscale (other
than indirectly through the strain gradient penalty), since such microstructural details are below the scale of
interest. The exact distribution of phases within the wire cross-section is unknown and one could envision
various possibilities as shown in Fig. 6. Nevertheless, the two phase fractions can vary independently, and
their effect is to alter the average properties of the cross-section, i.e., the effective properties along the X-
axis.

The constitutive relations for an SMA element are based on a specific Helmholtz free energy,
/ðk; k0; h; n1; n2Þ. Using the definition of the Helmholtz free energy, ð/ � e	 hsÞ, Eq. (24), and grouping
rate terms, the entropy production becomes

Fig. 4. Three uniaxial phases: two variants of martensite and austenite.

Fig. 5. Admissible phase space, (a) 3-D plane, (b) 2-D projection.
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Z X2

X1

�
	 q0Að/;h þ sÞ _hhþ R

1

A
�

	 q0A/;k

�
_kkþ R

2

A
�

	 q0A/;k0

�
_kk0 	 q0A/;ni

_nni 	
1

h
QXh0

�
dX
h

P 0: ð26Þ

The arbitrariness of the interval ½X1;X2�, of _hh, _kk, and _kk0, and the non-negativity requirement lead to the
following Gibb’s relations

s ¼ 	/;h;

R
1

¼ q0/;k;

R
2

¼ q0/;k0 :

ð27Þ

Entropy production arises, therefore, only from the phase transformation and heat flux terms, and so we
require

li _nni P 0;

	QXh0P 0;
ð28Þ

where the chemical driving forces (relative to austenite) are defined as li � 	/;ni ði ¼ 1; 2Þ. The heat flux
inequality (28) is satisfied, if we assume the conventional axial heat conduction law

QX ¼ 	Kh0; ð29Þ
where K is a positive (referential) thermal conductivity for the material. (Using qx ¼ 	kh;x, Eqs. (3) and
(15), results in the relation between the current and reference conductivities k ¼ k2K.) The conductivity is
assumed to follow the linear mixture rule,

Kðn1; n2Þ ¼ KA þ ðn1 þ n2ÞDK; ð30Þ
where KA is the thermal conductivity of pure austenite, and DK ¼ KM 	 KA is the difference in conductivity
between martensite and austenite. It is known, for example, that the thermal conductivity can change by a
factor of two depending on the phase (Faulkner et al., 2000).

Using the definition of Helmholtz free energy, the Gibb’s relations (27), and the heat flux constitutive
relations (19) and (29), the heat equation is now written as

q0A _QQs ¼ ðKAh0Þ0 þ HPðh	 haÞ; ð31Þ
where _QQs is the specific heat storage rate defined as

Fig. 6. Possible distributions of phases within the cross-section of wire.
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_QQs � h_ss	 li _nni; ð32Þ

and summation is implied on the repeated index i from 1 to 2. In general the entropy of the material can
have the same functional dependence as the Helmholtz free energy, s ¼ sðk; k0; h; n1; n2Þ, so the rate of
change is

_ss ¼ s;k _kkþ s;k0 _kk0 þ s;h _hhþ s;ni _nni: ð33Þ

The first derivatives of entropy are related to the second derivatives of the Helmholtz free energy and can be
interpreted as

q0s;k ¼ 	R
1

;h;

q0s;k0 ¼ 	R
2

;h;

s;h ¼
c
h
;

s;ni ¼ li;h;

ð34Þ

where c is the specific heat of the material. Consequently, the heat storage rate may be written as

q0
_QQs ¼ 	h R

1

;h
_kk

�
þ R

2

;h
_kk0
�
þ q0c _hhþ q0 hli;h

�
	 li

�
_nni; ð35Þ

where the first two terms represent the thermoelastic and sensible heat change, and the last term represents
the latent heat change.

All that remains is to ensure that the kinetic relations

_nni ¼ Viðl1; l2Þ; i ¼ 1; 2 ð36Þ
satisfy Eq. (28) to guarantee a non-negative entropy production. This will be addressed in the Section 4.

4. Constitutive relations

The constitutive behavior of the material is completely determined once the form of the free energy and
the kinetic relations are specified. Each of these is addressed in turn in the following two sections.

4.1. Helmholtz free energy

The free energy is decomposed into three parts as

/ðe; e0; h; niÞ ¼ /Eðe; e0; h; niÞ þ /Cðh; niÞ þ /TðhÞ; ð37Þ
where /E is the specific elastic (or mechanical) strain energy, /C is the specific chemical free energy, and /T

is the specific phase-independent thermal free energy. The nominal strain, e � k	 1, will be used from here
on. Note that the maximum strain that would be expected for a NiTi SMA is on the order of 0.08, so finite
strain kinematics may or may not be necessary, depending on the desired accuracy.

4.1.1. Elastic energy
The elastic strain energy density is chosen as

q0/Eðe; e0; h; niÞ ¼
Eðn1; n2Þ

2
½e	 ðn1 	 n2Þb	 aðn1; n2ÞDh�2 þ c

2
e02; ð38Þ
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where E is the phase-dependent elastic modulus, b is the transformation strain (a material constant), and a
is the phase-dependent thermal expansion coefficient. The expression (38) assumes an additive decompo-
sition of strain that is consistent with a small strain theory. The modulus follows the linear mixture rule

Eðn1; n2Þ ¼ EA þ ðn1 þ n2ÞDE; ð39Þ

where EA is the modulus of pure austenite and DE ¼ EM 	 EA is the difference in martensite to austenite
modulus. Note that in the neighborhood of the transformation (say 50 �C on either side of the transfor-
mation) the strain due to thermal expansion is two orders of magnitude less than the typical transformation
strain, so from here on thermal expansion effects will be neglected. The axial strain field is assumed to be
constant within the cross-section and each constituent supports an effective partial stress in the axial di-
rection (see Fig. 6). There is no attempt here to identify a specific microstructure, which would require
summing the volumetric energies of individual phases and interfacial energies between phase boundaries.
Rather, the interpretation of the internal parameters as actual phase fractions is relaxed somewhat. The aim
is to develop an engineering-level model, not to identify mechanisms at a lower length scale (although an
interesting problem), so the phase fractions in this context are used as interpolation parameters between the
axial elastic stress–strain response of the pure constituents (see Fig. 7). Furthermore, discontinuous axial
strain fields are not permitted, so a strain gradient penalty (the term involving e0) is added to the strain
energy in Eq. (38). According to the Gibb’s relations (27), the first and second order stresses are now

R
1

¼ ½EA þ ðn1 þ n2ÞDE�½e	 ðn1 	 n2Þb�;

R
2

¼ ce0:
ð40Þ

The inclusion of the strain gradient term in the elastic energy is a special case of and is consistent with the
approaches of Coleman (1983), which provided a heuristic argument, and Triantafyllidis and Bardenhagen
(1993), which derived parameters from an explicit microstructure of non-local spring networks. The ma-
terial parameter, c, is the strength of the strain gradient effect and can in general be a function of e, h, and
ni’s, but here we assume it to be a constant for simplicity (and in the absence of clear data to model its
dependence). A length scale appears in the energy associated with the strain gradient term c

2
e02, since e0

has units of L	1. A nonzero value of c ensures that transformation fronts, if present, appear as propa-
gating necks (see Fig. 3b), each with a smooth profile. This is consistent with experimental observations of

Fig. 7. Interpolation of linear elastic stress–strain responses between pure phases.
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propagating strain fields in fine-grained, polycrystalline wires where the axial extent is of the order of the
wire radius. Without this gradient effect discontinuous axial strain fields could appear in the boundary
value problem whenever the mechanical behavior becomes unstable.

4.1.2. Chemical and thermal energy
The form of the chemical part of the free energy /Cðh; n1; n2Þ is found from assumed mechanical iso-

therms that capture the nucleation peaks and transformation stresses observed in experiments. Stress-
induced phase transformations, A!Mþ and A!M	, are modeled along user-specified trajectories
R̂Rþðh; n1Þ and R̂R	ðh; n2Þ, respectively, in the stress-phase fraction space (see, for example, Fig. 8).

Consider first the free energy for the A!Mþ transformation ðn2 ¼ 0Þ at a relatively high, constant
temperature under homogeneous strain ðe0 ¼ 0Þ,

q0/ðe; 0; h; n1; 0Þ ¼
EA þ n1 DE

2
ðe	 n1bÞ2 þ G1ðh; n1Þ þ q0/TðhÞ; ð41Þ

where G1ðh; n1Þ � /Cðh; n1; 0Þ. According to the constitutive law, the nominal stress is

q0

o/
oe

� �A!Mþ

¼ ðEA þ n1 DEÞðe	 n1bÞ ¼ R̂Rþðh; n1Þ; ð42Þ

which specifies a parametric relation for the strain, e, with n1. Along the trajectory the appropriate chemical
driving force is set to zero, thereby defining a reversible equilibrium path. (The kinetic relation discussed
later will be used to impose any hysteretic behavior.) Therefore, we enforce

q0

o/
on1

� �A!Mþ

¼ DE
2
ðe	 n1bÞ2 	 bðEA þ n1DEÞðe	 n1bÞ þ

oG1

on1

¼ 0: ð43Þ

Eliminating the strain using Eq. (42), we get

oG1

on1

¼ bR̂Rþðh; n1Þ 	
DE
2

R̂Rþðh; n1Þ
EA þ n1 DE

" #2
; ð44Þ

which can be integrated to obtain G1 once R̂Rþðh; n1Þ is known. A similar relation is derived for the A!M	

transformation for compressive behavior,

oG2

on2

¼ 	bR̂R	ðh; n2Þ 	
DE
2

R̂R	ðh; n2Þ
EA þ n2 DE

" #2
; ð45Þ

where G2ðh; n2Þ � /Cðh; 0; n2Þ. Integration constants must be chosen such that G1ðh; 0Þ ¼ G2ðh; 0Þ.

Fig. 8. General A!Mþ transformation isotherm: (a) stress–strain, (b) stress–phase fraction.
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As an example, one can impose a temperature-dependent, but otherwise constant, tangent modulus,
EtðhÞ ¼ dR=de for the special case of a linear trajectory in stress–strain space with temperature dependent
nucleation strains, enðhÞ or 	enðhÞ, depending on the sign of the stress (see Fig. 9).

Rþ ¼ EAenðhÞ þ EtðhÞ½e	 enðhÞ�; for l1 ¼ 0; n2 ¼ 0; 06 n1 6 1;

R	 ¼ 	EAenðhÞ þ EtðhÞ½eþ enðhÞ�; for l2 ¼ 0; n1 ¼ 0; 06 n2 6 1:
ð46Þ

Considering first the A!Mþ transformation, the solution of the parametric form of the equation,

Et ¼
oR̂Rþ=on1

oe=on1

; ð47Þ

is

R̂Rþ ¼ ðEA þ n1 DEÞ½Etn1b	 ðEt 	 EAÞen�
EA þ n1 DE 	 Et

: ð48Þ

This is substituted into Eq. (44) and integrated to obtain G1. The above relations are symmetric with respect
to tension and compression, and thus G1 and G2 have the same form. This need not be the case in general,
since it is well known (Gall et al., 1999) that SMAs with significant crystallographic texture have non-
symmetric behavior. Nevertheless, for these chosen transformation paths, we have

G1 ¼ G2 ¼ Gðh; nÞ ¼ AðhÞnþ BðhÞn2 þ CðhÞ
DðhÞ þ n

	 CðhÞ
DðhÞ

AðhÞ ¼ ½bEtðhÞ�2

2DE
þ benðhÞ½EA 	 EtðhÞ�

BðhÞ ¼ 1

2
b2EtðhÞ

CðhÞ ¼ 1

2DE3
½bEtðhÞ 	 DEenðhÞ�2½EA 	 EtðhÞ�2

DðhÞ ¼ EA 	 EtðhÞ
DE

:

ð49Þ

Note that the integration constant in Gðh; nÞ is chosen so that Gðh; 0Þ ¼ 0 to ensure continuity of the
function at n1 ¼ n2 ¼ 0. The surface /Cðh; n1; n2Þ in n1–n2 space is constructed by assuming the following
interpolation.

Fig. 9. Linear stress-induced transformation paths.
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q0/Cðh; n1; n2Þ ¼ ð1	 2n2ÞGðh; n1Þ þ ð1	 2n1ÞGðh; n2Þ þ 4n1n2q0/mixðhÞ: ð50Þ

In this way the conditions for /Cðh; n1; 0Þ and /Cðh; 0; n2Þ are satisfied for stress-induced transformations
occurring along the phase space edges, and /Cðh; 12 ; 12Þ ¼ /mixðhÞ represents the free energy of the twinned
martensite material. The elastic and chemical parts of the free energy (/E and /C) are now completely
determined once the material constants, EA, DE, b, and c, and temperature-dependent functions, enðhÞ,
EtðhÞ, and /mixðhÞ, are specified.

Lastly, integrating the phase-independent part of the specific heat (assumed to be constant) in Eq. (34)
and then the entropy in Eq. (27) with respect to temperature, the thermal part of the free energy ð/TÞ is
written as

/TðhÞ ¼ /0 	 hs0 	 c0h ½logðhÞ 	 1�; ð51Þ

where /0, s0, and c0 are material constants representing the temperature-independent and phase-inde-
pendent free energy, entropy, and specific heat, respectively.

4.2. Kinetic relation

The kinetic relation must satisfy the entropy condition (28). The direction of phase transformation is
assumed to be colinear with the gradient of the chemical driving force, except at the boundary of the
admissible phase region. In the interior of the phase space the adopted kinetic relation is

_nn ¼ V ðlÞl=l; ð52Þ

where l is the magnitude of the chemical force vector and l=l is the unit vector in the direction of the
chemical force. The entropy requirement (28) requires that V ðlÞ satisfy lV ðlÞP 0. This allows many
possible kinetic laws to be adopted. A piecewise linear relationship as in Fig. 10a, for example, is

V ðlÞ ¼
v0ðlþ lcÞ : l < 	lc

0 : 	lc 6 l6 lc

v0ðl	 lcÞ : l > lc:

8<
: ð53Þ

The constant lc determines the critical chemical force required for the phase transformation to proceed. A
non-zero value of lc creates a quasi-static hysteresis for the transformation. The material constant v0 de-
termines the speed of the phase transformation. The speed of transformation in an SMA is usually limited
by the rate at which heat can be transferred to/from the material, not by the inherent martensitic trans-
formation speed at the atomic-lattice scale (approaching the elastic shear wave speed). The boundary value
problem may now have three time scales: one for the inherent kinetics (usually the shortest), one for
thermal heat transfer, and one for any applied mechanical loading.

In the limit as v0 !1, the kinetic relation can be expressed as ðl� lcÞV ¼ 0 (see Fig. 10b). One must be
careful with such a scheme, however, since the kinetic function is not defined for all values of l, and there
may be cases where the gradient of the chemical force exceeds the critical value for all admissible
phase fractions. An alternative kinetic relation that may be numerically desirable is a non-linear relation,
such as

V ðlÞ ¼
	v1½1	 ekvðlþlcÞ� : l < 	lc

0 : 	lc 6l6 lc

v1½1	 e	kvðl	lcÞ� : l > lc:

8<
: ð54Þ

where v1 is the maximum possible transformation rate. This relation is initially stiff, but remains bounded
to avoid infinite transformation rates (see Fig. 10c).
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The above discussion applies for the interior of the admissible phase space. Some modification is re-
quired to satisfy Eq. (25) along phase space boundaries,

n1 P 0; n2 P 0; 1	 ðn1 þ n2ÞP 0: ð55Þ

One can devise a switching function to ensure the current phase fraction remains within the admissible
region. The kinetic relation is now written as

_nn ¼ V ðl � vÞv; ð56Þ

where v is a unit vector that behaves (see Fig. 11) as

v ¼ l=l : interior; for all dj > 0
tðjÞ : on edge j; for dj ¼ 0; j ¼ 1; 2; 3;

�
ð57Þ

and the djs are the distances to the three edges fn2; 1	 ðn1 þ n2Þ; n1g having tangent vectors tðjÞ. Note that _nn
may become discontinuous at the edges of n-space, and some form of smoothing may be desirable for the
numerical implementation.

Fig. 10. Hysteretic kinetic relations: (a) linear relation, (b) infinite transformation speed, (c) non-linear, bounded transformation speed.
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5. Demonstration of constitutive behavior

A specific constitutive model is now demonstrated for several imposed temperature and strain histories.
In order to illustrate the material behavior for any single axial position X, we ignore (for the moment) any
gradients of strain and temperature and treat strain and temperature as control parameters. The sample
results that follow were implemented numerically in Mathematica (Wolfram Research, 1999). The kinetic
relation was solved using a fifth order Cash–Karp procedure (a variant of the Runge–Kutta algorithm) with
adaptive time stepping (Press et al., 1992). Switching functions were included to ensure phase fractions
remain within the admissible phase region according to Eq. (57), and the non-linear kinetic relation (54)
was implemented.

Table 1 gives values of material constants for a typical NiTi SMA. The table is divided into two columns
to indicate which parameters are well known (and do not change much between different NiTi alloys) and
which have been fitted for the particular alloy of Fig. 2. Fig. 12 shows a fit of the stress-induced trans-
formations, A!Mþ and A Mþ, for the NiTi material of Fig. 2. The temperature scale is normalized by
a reference temperature, hR, according to �hh � ðh	 hRÞ=hR, and the stress is normalized by the austenite
modulus, R � R=EA. The reference temperature suggested by the fit of Fig. 12 is 286 K. Note that this value
is close to the average of the temperatures associated with the austenite and martensite latent heat peaks,
283 K (see Fig. 1). The slope of the transformation stresses, dR=d�hh, in Fig. 12 is 0.0316 (7.73 MPa/K), and
the hysteresis stress, Rhyst, is 0.0021 (147 MPa). The slope, dR=d�hh, predicted by the Clausius–Clapeyron
relation is

dR

d�hh
¼ D�hh

De

 !Mþ!A

eqm

; ð58Þ

Fig. 11. Edge tangent vectors in the admissible phase space.

Table 1

Material constants

Known Fitted

q0 ¼ 6:5� 106 g/m3 b ¼ 0:05

EA ¼ 70 GPa hR ¼ 286 K

EM ¼ 46:7 GPa lc ¼ 1:077 J/g

c0 ¼ 0:5 J/gK s0 ¼ 1 J/gK
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where �hh � q0h=EA is the normalized enthalpy. Using the measured (stress-free) enthalpy change of 15.6 J/g
and transformation strain of about 0.05, the predicted value is dR=d�hh ¼ 0:029, which is within 10% of the
fitted value of 0.0316. It should be recognized that the stress-free enthalpy change may be different than the
value under stress, but the stress dependent enthalpy change is difficult to measure in practice.

Specific temperature-dependent parameters enðhÞ and EtðhÞ are chosen as piecewise linear functions (see
Table 2 and Fig. 13), separating the behavior into two regimes one on either side of the reference tem-
perature, hR. The parameters enðhÞ and EtðhÞ are chosen according to the Maxwell construction to fit the
average of the forward/reverse transformation stresses for temperatures above hR. Unfortunately, most
experimental data on NiTi wire do not include nucleation stresses, since they are usually masked by the
inevitable stress concentrations at the grips where the onset of transformation usually occurs. (However,

Fig. 12. Fit of propagation stresses for NiTi wire: dR=d�hh ¼ 0:0316, Rhyst ¼ 0:0021, hR ¼ 286 K.

Table 2

Piecewise linear fit for temperature-dependent (non-dimensional) parameters

�hh en Et
�//mix

	0.2 	0.00521 0.0117 	0.000279
0 0 0.0117 0

0.2 0.00734 	0.0283 0.000279

Fig. 13. Temperature-dependent functions for en, Et, and �//mix.
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small nucleation valleys can sometimes be observed during the reverse transformation upon unloading.)
One exception is Shaw and Kyriakides (1997) where nucleation stresses were measured for a somewhat
different NiTi material using dogbone specimens machined from thin strips. An experimental method is
also under development in the author’s laboratory to measure the nucleation peaks in wire specimens
through the use of non-uniform temperature fields (see Iadicola and Shaw, 2000). Values of the nucleation
strains are estimated (see Table 2) for the NiTi material of Fig. 2 based on the author’s experience with
ongoing experiments on other similar NiTi wire samples. In general, for temperatures above hRð�hh > 0Þ the
nucleation peaks become larger as the temperature increases, meaning that ðden=dhÞA!Mþ

is a rate some-
what greater than ðdR=dhÞA!Mþ

, and therefore, dEt=dh is negative. At temperatures below hRð�hh < 0Þ the
parameters en and Et loose their direct interpretation. It is known that the material response is much less
temperature sensitive at temperatures below hR than for temperatures above hR. A constant value of Et and
a linear en curve with a reduced slope were found to produce reasonable behavior at low temperatures. The
parameter, /mixðhÞ, was chosen to be linear with a positive slope across the entire temperature range,
passing through zero at the reference temperature ð�hh ¼ 0Þ. Under stress free conditions it causes the free
energy to favor twinned martensite ðn1 ¼ n2 ¼ 1

2
Þ at low temperatures and austenite ðn1 ¼ n2 ¼ 0Þ at high

temperatures.
Isothermal mechanical responses are now shown in which the strain history is imposed in load–unload

segments under tension ðe > 0Þ, then compression ðe < 0Þ as shown in Fig. 14. The time for each leg of the
strain history is normalized to unity according to �tt ¼ t=s, where s is the characteristic time for loading. An
isothermal response is shown in Fig. 15 for a relatively high temperature ð�hh ¼ 0:1979, or 70 �C). Strain
gradients are prescribed to be zero. The figure shows the predicted homogeneous stress–strain response, the
rate of heat change in the material, the change in the phase fractions with strain, and the trajectories in the
phase fraction space. During each load segment, Fig. 15a shows a trilinear mechanical behavior with an
unstable intermediate transformation branch. An experimental response is overlaid for comparison, but
one must recognize that it represents the force–displacement behavior arising from the inhomogeneous
response and propagating phase fronts. Each load and unload plateau stress in the experimental response
can be interpreted as the Maxwell stress for the hysteretic non-monotonic homogeneous behavior shown.
Fig. 15b shows the predicted latent heat changes according to Eq. (32), non-dimensionalized by
dQ=d�tt � q0s _QQs=EA, that are necessary to maintain an isothermal temperature. As expected, the heat
changes under tension are exothermic (negative) during loading (A!Mþ) and endothermic (positive)
during unloading (A Mþ). The compressive mechanical response shown is symmetric to the tensile re-
sponse and the heat changes follow the same exothermic/endothermic response during loading/unloading.
The changes in phase fractions ðn1; n2Þ are shown in Fig. 15c and d. Fig. 15c shows the changes as a function

Fig. 14. Imposed strain history for isotherms.
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of the imposed strain and Fig. 15d shows the trajectories in n1–n2 space. During tensile loading, the M	

fraction remains zero while Mþ changes hysteretically, and vice versa during compressive loading.
Fig. 16 shows the tensile, then compressive responses, for the case starting with twinned martensite

ðn1 ¼ n2 ¼ 1
2
Þ at a relatively low temperature, ð�hh ¼ 	0:0115, or 10 �CÞ. Fig. 16a shows the mechanical re-

sponse where a reversal of stress is now necessary to reverse the direction of phase transformation. It shows
the correct behavior (ferroelectric-like response) with positive tangent modulus (stable behavior) for
twinning/detwinning of martensite. However, the mechanical hysteresis is underpredicted compared to the
experiment. This is likely a result of the simplifying assumption that the critical chemical driving force lc is
constant. It may, in fact, be a function of the phase fraction or temperature or even the direction of phase
transformation. Nevertheless, the response is a reasonable qualitative representation of detwinning
(Mþ=M	 !Mþ). Fig. 16b shows minimal heat changes as expected. Fig. 16c and d show the phase fraction
histories and trajectories, respectively. The austenite phase fraction (1	 n1 	 n2) remains zero and the
phase state changes from twinned martensite (Mþ=M	) to detwinned martensite (Mþ) under tension, then
to detwinned martensite (M	) under compression.

An interesting predicted response occurs at the intermediate temperature of �hh ¼ 0:02339, or 20 �C,
starting in the austenite phase as shown in Fig. 17. During loading, a stable transformation occurs from A
to Mþ as shown in Fig. 17a and b, but then during unloading the phase fraction trajectory proceeds to-
wards a mixture of A, Mþ, and M	. Continued loading into compression is shown in Fig. 17c and d. The

Fig. 15. Isothermal response at �hh ¼ 0:1979 (70 �C): (a) stress–strain isotherm, (b) heat changes, (c) phase fraction changes, (d) phase

space trajectory.
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mechanical response exhibits an interesting ‘staircase’ history and the phase trajectory traces a ‘bow-tie’
shape in n1–n2 phase space. The step in the mechanical response of Fig. 17c occurs when the phase fraction
reaches a boundary in n1–n2 space and the trajectory suddenly changes direction (Fig. 17d). The hysteresis is
less during angled transformation paths than when phase transformation occurs along horizontal (n2 ¼ 0)
or vertical (n1 ¼ 0) boundaries. This is a feature of the model again due to the assumed constant lc that may
warrant future modeling improvement.

Fig. 18 shows a series of the predicted mechanical isotherms for tensile loading/unloading at several
temperatures overlaid with the results of NiTi force–displacement experiments. While details of some of the
non-linearities in the experiments are missing, the calculated constitutive behavior successfully captures the
overall trends.

Lastly, calorimetry results are simulated. Fig. 19a shows the predicted heat changes and Fig. 19b and c
show the transformation paths for the case of zero applied strain (also zero stress) and prescribed tem-
perature ramps. A hysteresis is calculated that is similar to the Ms and As temperatures measured in Fig. 1.
(No R-phase is included in the model.) The calculated response differs in that the latent heat peaks are quite
narrow (actually approach delta functions as the temperature rate becomes slow). The model does not as
yet capture the athermal nature of the transformation in NiTi. Fig. 20 shows a similar result for the case of
a fixed applied strain, e ¼ 0:005. Fig. 20a shows the predicted calorimetry, Fig. 20b shows the predicted
stress response, and Fig. 20c and d show the transformation paths. As expected, the calorimetry is similar to

Fig. 16. Isothermal response at �hh ¼ 	0:0115 (10 �C): (a) stress–strain isotherm, (b) heat changes, (c) phase fraction changes, (d) phase

space trajectory.
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the previous case, but the stress undergoes a hysteretic loop and the Mþ phase is somewhat favored at the
expense of the M	 phase.

6. An example numerical problem

A simplified problem is demonstrated in this section in order to exhibit the ability to model propagating
phase boundaries. The 1-D wire of interest is under isothermal conditions at a pseudoelastic temperature,
stretched under displacement control at constant rate. This represents the case where the displacement rate
is sufficiently slow that the ambient medium can extract or supply heat, as necessary, to keep the tem-
perature field constant. As seen in experiments at very slow loading rates (Shaw and Kyriakides, 1995) only
a single transformation front occurs in the specimen, starting from one end at the site most favourable to
initiate phase transformation (geometric imperfection or stress concentration) and traversing the wire
length to the other end. In this case the heat equation can be ignored, since the temperature remains
constant. At an elevated (pseudoelastic) temperature only one internal parameter for Mþ (n1) is active, since
M	 does not appear.

Fig. 17. Isothermal response at �hh ¼ 0:02339 (20 �C): (a) tensile stress–strain isotherm (initially A), (b) tensile phase space trajectory, (c)

compressive stress–strain isotherm, (d) compressive phase space trajectory.
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Fig. 18. Pointwise stress–strain isotherms and force–displacement experiments at �hhs: (a) 	0.01152 (initially Mþ=M	), (b) 0.02339

(initially A), (c) 0.05830, (d) 0.09321, (e) 0.1281, (f) 0.1630, (g) 0.1979, (h) 0.2328.
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The initial conditions for uðX ; tÞ are
uðX ; 0Þ ¼ _uuðX ; 0Þ ¼ 0; for 06X 6 L ð59Þ

and the boundary conditions are

uð0; tÞ ¼ u0ð0; tÞ ¼ u0ðL; tÞ ¼ 0; uðL; tÞ ¼ dðtÞ; for t > 0; ð60Þ

where the displacement is imposed according to a load–unload ramp with an average strain rate of
_dd=L ¼ 1� 10	1 s	1. Actually, the strain rate is relatively unimportant since there are no thermal effects, but
it sets the loading time scale (1 s for a ramp to 0.1 average strain) to be compared to the characteristic time
of the kinetic law.

dðtÞ ¼
_ddt : for 06 t6 s
_ddðs	 tÞ : for s < t6 2s;

�
ð61Þ

The equilibrium equation is solved numerically with a finite element research code (SARPP, 2001). The
axial length is discretized by 100 equal-length finite elements. Each finite element has two nodes with two
degrees of freedom (u, u0) per node. This ensures continuity of displacement and strain across interelement
nodes. The displacement field is interpolated with cubic Hermite polynomials. An area imperfection of 1%
at X ¼ 0, decreasing linearly to zero at the other end, is introduced to model the effect of a stress con-
centration at one of the grips. It is introduced to control the location of the initial nucleation.

Fig. 19. Temperature controlled response at zero strain: (a) calorimetry, (b) phase fraction changes, (c) phase space trajectories.
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Parameters used in the finite element simulations are given in Table 3. The linear kinetic law of equation
(53) is used. As previously mentioned a bar over a variable denotes a non-dimensional parameter. Non-
dimensional parameters for the strain gradient coefficient, the critical chemical potential, and the linear
kinetic law coefficient are defined as �cc � c=ðEAL2Þ, �llc � lcq0=EA, �vv0 � v0EAs=q0, respectively. The critical
chemical potential, �llc, is chosen as before to model the known hysteresis in the pseudoelastic loops. The
kinetic coefficient, �vv0, is chosen to give a very short relaxation time compared to the characteristic loading
time, s.

Fig. 20. Temperature controlled response at fixed strain of 0.005: (a) calorimetry, (b) stress response, (c) phase fraction changes, (d)

phase space trajectory.

Table 3

Parameters used in example finite element simulations (Fig. 21)

�hh ¼ 0:1979

DE ¼ 	0:333
b ¼ 0:05

en ¼ 0:00726
Et ¼ 	0:0279
�cc ¼ 2� 10	4, 5� 10	4

�llc ¼ 1� 10	4

�vv0 ¼ 2� 106
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Under end-displacement control, inertia effects can be avoided by using a rather strong strain gradient
coefficient (c) and relatively large imperfection, so that equilibrium paths during nucleation events occur
without a cusp in the force–displacement response. Since the length scale associated with the gradient effect
is of the order of the wire diameter, a large gradient coefficient corresponds to the case of a short segment of
wire (say, L=D < 5). This is a simplification of the behavior in experiments on long wires (say, L=D > 100),
where such cusps do exist and nucleation events are dynamic (a subjects for later study).

Fig. 21 presents the results of finite element simulations for two different values of the strain gradient
coefficient (�cc). Fig. 21a shows the case with the smaller value of �cc. The calculated force–displacement
(R	 d=L) shows an initial austenite elastic branch during stretching at a constant end-displacement rate. A
critical load is reached and transformation to Mþ begins at the end X ¼ 0 as seen in the loading profiles of
n1 near d=L ¼ 0:01. As nucleation of Mþ continues at X ¼ 0 (see the loading profile for d=L ¼ 0:015) the
load drops somewhat. Soon thereafter a fully formed transformation front is established and it propagates
to the right (as seen in the loading profiles). This occurs at constant load until the front nears the right end
(X=L ¼ 1). The front disappears in a sort of reverse nucleation and there is a further momentary drop in
load near d=L ¼ 0:06. This sequence during transformation of an initial nucleation peak, a load plateau,
then a slight drop during coalescence at the end of transformation have been observed in carefully con-
trolled experiments (Shaw and Kyriakides, 1997). Continued stretching occurs in a relatively uniform
manner, and the load rises along the elastic branch associated with 100% Mþ.

The end-displacement direction is then reversed and the material is gradually unloaded. Unloading
occurs elastically along the Mþ elastic branch until a reverse transformation is initiated at X=L ¼ 1 some
time after the end-displacement decreases below d=L ¼ 0:055. A reverse nucleation event occurs and an
upside-down nucleation peak (valley) is seen in the force–displacement response. A single front propagates
from right to left as seen in the profiles of Mþ during unloading. The reverse transformation is complete
once the end-displacement decreases below d=L ¼ 0:005, and a slight upturn in the force–displacement
response is seen then. Again, the reverse transformation exhibits details which have been observed in ex-
periments. The remainder of the unloading occurs elastically and the pseudoelastic cycle is complete when
the end-displacement reaches zero.

Fig. 21b shows the results of a finite element simulation for a value of the strain gradient coefficient (�cc) 10
times larger than before. The calculated response is quite similar to the previous case, except that nucleation
and coalescent events occur more gradually, and the profiles of Mþ phase fraction are broader in length. In
this way the strain gradient coefficient can be tuned to the particular wire geometry being used. Since the
strain gradient energy is c

2
e02, a simple dimensional analysis shows that the profile length of a transformation

front (DLn=L) is roughly proportional to
ffiffiffi
�cc
p

.
Further numerical simulations of the fully coupled thermomechanical problem derived in this paper and

a thorough parametric study are left for later work. The role of axial heat transfer versus radial heat
transfer, for example, is an interesting issue, which has been studied experimentally in Shaw and Kyriakides
(1995, 1997) and numerically in Iadicola and Shaw (in preparation). The current approach should be able
to address these issues in a more computationally efficient way.

7. Summary and conclusions

A coupled thermomechanical boundary value problem and constitutive relations were derived for a 1-D
SMA element. Mechanical equilibrium and heat equation were derived with strain gradient effects. Con-
stitutive relations were derived consistent with fundamental thermodynamic considerations and experi-
mental observations of typical SMA wires. An explicit Helmholtz free energy function was developed that
included internal field variables representing phase fractions of austenite and 1-D variants of martensite. It
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was calibrated to experimental mechanical isotherms and differential scanning calorimetry of a commer-
cially available NiTi SMA. The free energy was augmented by a hysteretic kinetic relation that governs the
rate of phase transformation as a function of chemical driving forces. Strain-controlled and temperature-
controlled responses were demonstrated for a typical NiTi material under homogenous strain and tem-

Fig. 21. Results of two finite element simulations (force–displacement response and profiles of Mþ fraction for loading and unloading)

for isothermal (�hh ¼ 0:1979) pseudoelastic behavior (A$Mþ) under an end-displacement (d=L) controlled cycle: (a) �cc ¼ 5� 10	5, (b)

�cc ¼ 5� 10	4.
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perature conditions, and an isothermal pseudoelastic response with a single transformation front was
demonstrated using finite element analysis.

Overall, the model provides a satisfactory representation of the uniaxial thermomechanical behavior of
an SMA wire. It provides a thermodynamically consistent approach to model the shape memory effect, the
pseudoelastic behavior, along with latent heat changes and possible unstable transformation behavior. It is
an attempt to capture all these phenomena in a single model. The agreement with experiments is reason-
able, capturing the basic trends. Future refinement to capture certain details of the non-linear mechanical
behavior, the athermal nature of calorimetry, and low temperature mechanical hysteresis are certainly
possible.

A key parameter of the model is a user-specified tangent modulus for stress-induced transformation that
can be used to trigger unstable behavior. The model is appropriate for finite element implementation, since
the inclusion of strain gradient effects avoids singularity of the equilibrium equation during the transition
from stable to unstable mechanical behavior. There is no need to explicitly track propagating phase
boundaries as discontinuous quantities, since these will arise naturally as smooth, localized propagating
fields in the boundary value problem. The inclusion of strain gradient effects allows one to model the finite
extent of nucleation events and transformation fronts, which can in turn determine the non-uniform
temperature field and the number of nucleations and ensuing fronts that exist during transformations.
Consequently, the model should be suitable to numerically study a variety of interesting future applications,
such as SMA wires with propagating transition fronts embedded in interacting fluid or solid media.
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